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Abstract

In this paper we will consider some extensions of the usual term rewrite format, namely:
term rewriting with conditions, infinitary term rewriting and term rewriting with bound variables.
Rather than aiming at a complete survey, we discuss some aspects of these three extensions.
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INTRODUCTION

The aim of the present Workshop is to focus upon conditional term rewriting, typed term rewriting and
other extended forms of term rewriting. Accordingly, in this paper we have set out to discuss three of
these extensions, viz. infinite term rewriting, conditional rewriting and term rewriting with bound vari-
ables. Our discussion will be largely of an introductory nature. The subject of the second part, conditional
term rewriting, is already well established and widely studied; we will develop some of the basic theory
and then focus on a proof-theoretic application of Conditional Term Rewriting Systems that seems not to
be generally known yet. The first part, which is rendered in a rather informal style following the corres-
ponding talk at this Workshop, does present some recently obtained insights about infinite term rewriting,
The extension discussed in section 3, sometimes called Combinatory Reduction Systems, gives a frame-
work incorporating not only (ordinary) TRSs, but also rewrite systems with bound variables, as in the
Lambda Calculus. We discuss some of the ‘classical’ theorems (Church-Rosser etc.) for the subclass of
orthogonal CRSs. More introductory remarks and motivations can be found at the beginning of each of
the three sections.
Our notation and terminology follow Klop [1987, 1991].
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1. INFINITE TERM REWRITING

In this section we explain some recent work on infinite term rewriting as reported in Kennaway, Klop,
Sleep & de Vries [1990ab, 1991] where the formal treatment including full proofs can be found. This
work was stimulated by earlier studies of infinite rewriting by-Dershowitz, Kaplan & Plaisted [1989] and
Farmer & Watro [1989].

There is ample motivation for a theoretical study of infinite rewriting, in view of the facility that several
lazy functional programming languages such as Miranda (Turner [1985]) and Haskell (Hudak [1988])
have enabling them to deal with (potentially) infinite terms, representing e.g. the list of all primes. An-
other motivation is the correspondence between infinite rewriting and rewriting of term graphs: a theory
for infinite rewriting provides much of a foundation for a theory of term graph rewriting, since a cyclic
term graph yields after unwinding an infinite term. Indeed, this correspondence has been the starting point
for the work of Farmer & Watro [1989].

Our starting point is an ordinary TRS (Z, R), where X is the signature and R is the set of rewrite rules.
In fact, we will suppose throughout that our TRSs are orthogonal. Now it is obvious that the rules of the
TRS (Z, R) just as well apply to infinite terms as to the usual finite ones. First, let us explain the notion of
infinite term that we have in mind. Let Ter(Z) be the set of finite Z-terms. Then Ter(Z) can be equipped
with a distance function d such that for t, s € Ter(Z), we have d(t, s) = 21 if the n-th level of the terms s,
t (viewed as labelled trees) is the first level where a difference appears, in case s and t are not identical;
furthermore, d(t, t) = 0. It is well-known that this construction yields (Ter(Z), d) as a metric space. Now
infinite terms are obtained by taking the completion of this metric space, and they are represented by in-
finite trees. We will refer to the complete metric space arising in this way as (Ter=(Z), d), where Ter>(Z)
is the set of finite and infinite terms over Z.

A natural consequence of this construction is the emergence of the notion of Cauchy convergence as a
possible basis for infinite reductions which have a limit: we say that ty — t; — ty — ... is an infinite re-
duction sequence with limit t, if t is the limit of the sequence tg, t, ... in the usual sense of Cauchy
convergence. See Figure 1.1 for an example, based on a rewrite rule F(x) — P(x, F(S(x))) in the presen-
ce of a constant 0.

FQ) —» P —b ... P
0/\F 0/\P
's N,
l) s/ \P

Limit: infinite sequence of natural numbers

Figure 1.1

In fact, this notion of converging reduction sequence is the starting point for Dershowitz e.a. [1989]. In
the sequel we will however adopt a stronger notion of converging reduction sequence which turns out to
have better properties. First, let us argue that it makes sense to consider not only reduction sequences of
length ©, but even reduction sequences of length o for arbitrary ordinals a.. Given a notion of conver-
gence, and limits, we may iterate reduction sequences beyond length @ and considere.g. ty = t; >ty =
w =ty o> .. Sp > S| > Sy = S3 —> ... T where lim_,, t; = sg and lim,_,., s, = r. See Figure 1.2 for
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such a reduction sequence of length ® + ®, which may arise by evaluating first the left part of the term at
hand, and next the right part. Of course, in this example a ‘fair’ evaluation is possible in only ® many
reduction steps, but we do not want to impose fairmess requirements at the start of the theory
development—even though we may (and will) consider it to be a desirable feature that reductions of
length o could be ‘compressed’ to reductions of length not exceeding @ steps, yielding the same ‘result’.

/P\——m—-> P —_— P,
F F

|
0 !) J

Transfinite reduction sequence of length @+ ®

Figure 1.2

‘We will give a formal definition now.

1.1. DEFINITION. Let (£, R) be a TRS. A (Cauchy-) convergent R-reduction sequence of length . (an
ordinal) is a sequence (t3 | B < o) of terms in Ter™(Z), such that

(@ tg—oRrtpsforallf<a,

@) ty=limpy tg for every limit ordinal A<o.

Here (ii) means: Vn 3u <A Vv Sv<A = d(t,. ) <2

NOTATION: If {tg | B < ot} is a Cauchy-convergent reduction sequence we write tg —4° ty (‘c’ for
‘Cauchy’).

The notion of normal form as a final result has to be considered next. We simply generalize the old fini-
tary notion of normal form to the present infinitary setting thus: a (possibly infinite) term is a normal form
when it contains no redexes. The only difference with the finitary case is that here a redex may be itself an
infinite term. But note that a redex is still so by virtue of a finite prefix, called the redex pattern——this is so
because our rewrite rules are orthogonal and hence contain no repeated variables. This choice of ‘normal
form’ deviates from that in Dershowitz e.a. [1989]: there a (possibly infinite) term t is said to be an o-
normal form if either t contains no redexes, or the only possible reduction of t is to itself: t — t, in one
step.

AO)

Limit: an  @-normal form,
but not an infinitary normal form.

P —

Figure 1.3
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So, in Figure 1.3 we have, with as TRS {C — A(C), A(x) — x}, a (Cauchy-) converging reduction se-
quence with as limit the infinite term A(A(A(A..., abbreviated as A%, this limit is not a normal form in our
sense but it is an w-normal form, as A® only reduces to itself: A® — A®, (Note that this step can be per-
formed in infinitely many different ways, since every A in A® is the root of a redex.) Normal forms in
our sense are shown in Figures 1.1, 1.2 as the rightmost terms (if no other reduction rules are present
than the one mentioned above). Henceforth we will often drop the reference ‘infinite’ or ‘infinitary’. Thus
a term, or a normal form, may be finite or infinite. Note that the concept ‘normal form’, in contrast to that
of ‘w-normal form’, only depends on the left-hand sides of the reduction rules in the TRS (Z, R), which
makes the former notion more amenable for analysis. Henceforth we will only consider ‘normal forms’,
but we note that @»-normal forms give rise to some interesting and challenging problems explicitly stated in
Kennaway e.a. [1991].

The notion of Cauchy-converging reduction sequence that was considered so far, is not quite satisfac-
tory. We would like to have the compression property:

—2ate = o< tor
That is, given a reduction ty —4° t, of length a., the result ty can already be found in at most ® many

steps. (‘At most’, since it may happen that a transfinite reduction sequence can be compressed to finite
length, but not to length ®.) Unfortunately, — ¢ lacks this property:

1.2. COUNTEREXAMPLE. Consider the orthogonal TRS with rules {A(x) = A(B(x)), B(x) = E(x)}.
Then A(x) 5, AB®) — A(E(B®)), so A(x) 2441 AE(B®)). However, we do not have A(X) =<y
A(E(B®)), as can easily be verified.

Parallel Moves Lemma

R
to n (a)

w

projection R'

infinite reduction R ®

projection R

Figure 1.4

Another obstacle to a satisfactory theory development for —,C is that the well-known Parallel Moves
Lemma resists a generalization to the present transfinite case. We recall the Parallel Moves Lemma in
Figure 1.4(a): setting out a finite reduction R.: ty —» t, against a one step reduction ty — t' (where s is the
contracted redex), one can complete the reduction diagram in a canonical way, thereby obtaining as the
right-hand side of the diagram a reduction t, —» t* which consists entirely of contractions of all the des-
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cendants of s along R.. Furthermore, the reduction R': t' —» t* arising as the lower side of this reduction
diagram, is called the projection of R over the reduction step ty — t'. Notation: R' = R/ (tg = t).

We would like to have a generalization of Parallel Moves Lemma where R is allowed to be infinite,
and converging to a limit. In this way we would have a good stepping stone towards establishing infini-
tary confluence properties. However, it is not clear at all how such a generalization can be established.
The problem is shown in Figure 1.5. First note that we can without problem generalize the notion of
‘projection’ to infinite reductions, as in Figure 1.4(b): there R is the projection of the infinite R over the
displayed reduction step. This merely requires an iteration of the finitary Parallel Moves Lemma, no
infinitary version is needed. Now consider the two rule TRS {A(x, y) = A(y, x), C — D}. Let R be the
infinite reduction A(C, C) = A(C, C) = A(C, C) - ..., in fact a reduction cycle of length 1. Note that
R is converging, with limit A(C, C). The projection R' of R over the step A(C, C) - A(D, C),
however, is no longer converging. For, this is A(D, C) = A(C, D) = A(D, C) = ..., a ‘two cycle’. So,
the class of infinite converging reduction sequences is not closed under projection. This means that in
order to get some decent properties of infinitary reduction in this sense, one has to impose further re-
strictions; Dershowitz e.a. [1989] chooses to impose these restrictions on the terms, thus ruling out e.g.
terms as A(C, C) because they are not ‘top-terminating’. (We will come back to this important notion later
on.) Another road, the one taken here, is to strengthen the concept of converging reduction sequence—
this option is also chosen in Farmer & Watro [1989].

Cauchy converging reduction
AG C) — A(C,C) =P AG, C) e

NI

AD,C) ———p A(C,D) =8 AD, C) ~ermenneipe

Projection: not Cauchy converging

Figure 1.5

As the last example shows, there is a difficulty in that we loose the notion of descendants which is so
clear and helpful in finite reductions. Indeed, after the infinite reduction A(C, C) — A(C, ©) = A(C, O)
= ..., with Cauchy limit A(C, C), what is the descendant of the original underlined redex C in the limit
A(C, C)? There is no likely candidate.

We will now describe the stronger notion of converging reduction sequence that does preserve the
notion of descendants in limits. If we have a converging reduction sequence tosgt1 25y - b where s;
is the redex contracted in the step t; — t;,; and t is the limit, we now moreover require that

lim;_,., depth(s;) = o, ()

Here depth(s;), the depth of redex s;, is the distance of the root of t; to the root of the subterm s;. If the
converging reduction sequence satisfies this additional requirement («), it is called strongly convergent.
The difference between the previous notion of (Cauchy-) converging reduction sequence and the present
one, is suggested by Figure 1.6. The circles in that figure indicate the root nodes of the contracted re-
dexes; the shaded part is thar prefix part of the term that does not change anymore in the sequel of the re-
duction. The point of the additional requirement («) is that this growing non-changing prefix is required
really to be non-changing, in the sense that no activity (redex contractions) in it may occur at all, even
when this activity would by accident yield the same prefix.
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Figure 1.6

Note that there is now an obvious definition of descendants in the limit terms; the precise formulation
is left to the reader.

In fact, we define strongly converging reductions of length o for every ordinal «, by imposing the
additional condition () whenever a limit ordinal A < o is encountered. (It will turn out however that only
countable ordinals may occur.) More formally:

1.3. DEFINITION. Let (£, R) be a TRS. A strongly convergent R-reduction sequence of length o is a

sequence (tg | B < c) of terms in Ter=(Z), together with a sequence (sp | § < &) of redex occurrences sg in tg,
such that

@) tg _’Sp B+1 forall<a,

(ii) for every limitordinal A< c: Vn3u <A Vv (USv <A = d(ty, t)) <21 & depth(s,) 2 n).
Notation: Often we will suppress explicit mention of the contracted redexes sg. If {tg | B < o) is a strongly
convergent reduction sequence we write ty ¢, to.

Furthermore, a divergent reduction sequence is a sequence {tg | f < A), A some limit ordinal, such that
every initial segment g | B < v) is strongly convergent, but there is no ty, such that (tg | B <A) is strongly
convergent. (E.g. the infinite reduction A(C, C) = A(C, C) — ... considered above, is divergent.)

Henceforth all our infinitary reductions will be strongly convergent. Now we can state the benefits of
this notion; for the full proofs we refer to Kennaway e.a. [1990a].

1.4. COMPRESSION LEMMA. In every orthogonal TRS:

togl = t—yth

(Note that the counterexample 1.2 to compression for Cauchy converging reductions was not strongly
converging.)

1.5. INFINITARY PARALLEL MOVES LEMMA. In every orthogonal TRS:

1 m—
[} o a

gdescendams of s

A i o

B
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That is, whenever ty — g to and tg = ', where s is the contracted redex (occurrence), there are infinitary
reductions U —p t* and tg —y t*. The latter reduction consists of contractions of all descendants of s
along the reduction tg =g to.

Actually, by the Compression Lemma we can find B, ¥ < .

As a side-remark, let us mention that in every TRS (even with uncountably many symbols and rules),
all transfinite reductions, strongly convergent as well as divergent, have countable length. All countable
ordinals can indeed occur as length of a strongly convergent reduction. (For ordinary Cauchy convergent
reductions this is not so: the rewrite rule C — C yields arbitrarily long convergent reductions C —¢° C.
However, these are not strongly convergent.)

The infinitary Parallel Moves Lemma is “half of the infinitary confluence property”. The question
arises whether full infinitary confluence holds. That is, given tg —¢ t1, tg —>p tp, is there a t3 such that t;
=y 13, tp =5 t3 for some ¥, 8? Using the Compression Lemma and the Parallel Moves Lemma all that
remains to prove is: given ty —>, t1, fg —>¢ tz, is there a t3 such that t; —><, t3, ty —<, t3? Surprisingly,
the answer is negative: full infinitary confluence for orthogonal rewriting does not hold. The
counterexample is in Figure 1.7, consisting of an orthogonal TRS with three rules, two of which are
‘collapsing rules’. (A rule t - s is collapsing if s is a variable.) Indeed, in Figure 1.7(a) we have C —,
A®, C -, B® but A®, B® have no common reduct as they only reduce to themselves. Note that these
reductions are indeed strongly convergent. (Figure 1.7(b) contains a rearrangement of these reductions
that we need later on.)

AX) .5 x
B(x) - x
C o A®BC)
@ ®)
C C
4 ]
A®BO) ABC
e J
4O \LB(C) BaBC
AGBO)  BABC) /BABABC
AA(C) f‘B‘C» ABABABABAB
i(A(Aass(cm) fmwa(o)» :,/ \,‘
AAKO) B
A ; BO)) © g0
o e L O
Failure of infinitary confluence

Figure 1.7

Yet, not all is lost: we do have unicity of (possibly infinite) normal forms.

1.6. THEOREM. For all orthogonal TRSs: Let t =gt t —p t" where t', t" are (possibly infinite) normal
Jorms. Then t' =t",
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Here =denotes syntactical equality. Note that in the ABC counterexample in Figure 1.7 the terms A® and
B® are not normal forms.

This Unique Normal Form property, by the way, also holds for Cauchy-converging reductions, that
is, with —, replaced by —4¢ and likewise for . The reason is that we have:

t =St & tisanormal form = t—og,t.

(For o = o this is easy to prove; in fact a converging reduction of length ® to a normal form is already
strongly convergent. For general o, the proof of the statement requires some work.)

We will now investigate the extent to which infinitary orthogonal rewriting lacks full confluence. It
will turn out that non-confluence is only marginal, and that terms which display the bad behaviour are
included in a very restricted class. The following definition is inspired by a classical notion in A-calculus;
see Barendregt [1981].

1.7. DEFINITION.

(i) The term t is in head normal form (hnf) if t = C[ty, ..., t,] where C[, ..., ] is a non-empty context
(prefix) such that no reduction of t can affect the prefix C[, ..., ]. More precisely, if t —» s then s = C[s;,
.. 8] for some s; (i = 1, ..., n), and every redex of s is included in one of the 5; (i = 1, ..., n).

(ii) t has a hnfift—» s and s is in hnf.

Actually, this definition is equivalent to one of Dershowitz e.a. [1989]; there a term t is called ‘top-
terminating’ if there is no infinite reduction t — t' — t" — ... in which infinitely many times a redex con-
traction at the root takes place. So: t is top-terminating <> t has a hnf. We need one more definition before
formulating the next theorem.

1.8. DEFINITION. If t is a term of the TRS R, then the family of t is the set of subterms of reducts of t, i.e.
{s|t-»g C[s] for some context C[ 1}.

1.9. THEOREM. For all orthogonal TRSs: Let t have no term without hnf in its family. Then t is infinitary
confluent.

Just as in A-calculus, one can now formulate some facts about “Béhm trees”, which are (possibly
infinite) terms where the subterms without hnf are replaced by a symbol Q for ‘undefined’. As in A-
calculus, each term in an orthogonal TRS has a unique B6hm tree. It is also possible to generalize much
of the usual theory for finitary orthogonal rewriting to the infinitary case. We mention the theory of Huet
& Lévy [1979, 1991] about ‘needed redexes’, and results about reduction strategies (such as the parallel-
outermost strategy). For more information we refer to Kennaway e.a. {1991].

Here we want to reconsider the last theorem. Actually, it can be much improved. Consider again the
ABC example in Figure 1.7. Rearranging the reductions C —, A®, C —(, B? as in Figure 1.7(b) into
reductions C —¢, (AB)® -, A® and C -, (AB)® —, B® makes it more perspicuous what is going
on: (AB)® is an infinite ‘tower’ built from two different collapsing contexts A( ), B( ), and this infinite
tower can be collapsed in different ways.

The ABC example (Figure 1.7) is not merely a pathological example; the same phenomenon (and
therefore failure of infinitary confluence) occurs in Combinatory Logic, as in Figure 1.8, where an infinite
tower built from the two different collapsing contexts KOK and KOS is able to collapse in two different
ways. (Note that analogous to the situation in Figure 1.7, the middle term, built alternatingly from KOK
and KOS, can be obtained after o steps from a finite term which can easily be found by a fixed point
construction.) Also for A-calculus one can now easily construct a counterexample to infinitary confluence.
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Figure 1.8

Remarkably, it turns out that the collapsing phenomenon is the only cause of failure of infinitary con-
fluence. (The full proof is in Kennaway e.a. [1990b].) Thus we have:

1.10. THEOREM. (i) Let the orthogonal TRS R have no collapsing rewrite rules t(Xy, ..., X;) = X;. Then
R is infinitary confluent.
(ii) IfR is an orthogonal TRS with as only collapsing rule: 1(x) — x, then R is infinitary confluent.

Call an infinite term C,[Cy][...Cy[...]...]], built from infinitely many non-empty collapsing contexts -
Ci[ 1, a hereditarily collapsing (hc) term. (A context C[ ] is collapsing if C[ ] contains one hole O and C[ ]
—» [0.) Also a term reducing to a hc term is called a hc term. E.g. C from the ABC example in Figure 1.7
is a he term. Clearly, he terms do not have a hnf.

1.11. THEOREM. Let t be a term in an orthogonal TRS, which has not a hc term in its family. Then tis
infinitary confluent.

This theorem can be sharpened somewhat, as follows. Let us introduce a new symbol O to denote hc
terms, with the rewrite rule:

t—, Oiftisahcterm.

Of course this rule is not ‘constructive’, i.e. the reduction relation —, may be undecidable (as it is in CL,
Combinatory Logic). However, we now have that orthogonal reduction extended with —, is infinitary
confluent.
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That he terms are the only terms that stand in the way of infinitary confluence is also suggested by the
following detour, which may be of independent interest. Let R be a TRS. Then R,_l is the TRS obtained by
extending R with the p-rule:

PX.Z(x) = Z(Ux.Z(x)).

Here Z(x) is a meta-variable, denoting an arbitrary term in Ry, possibly containing the variable x; and
Z(ux.Z(x)) is the result of substituting px.Z(x) for the free occurrences of x in Z(x).

EXAMPLE: Let R = {A(x) — X, B(x) — x}. Then in R,,l we have the reduction
UX.A(B(x)) = ABUX.ABX))) = A(Ux.A(B(x))) = A(ux.B(x)) =» ABUx.B(X))) = ...

In fact, Ry, is a TRS with bound variables or Combinatory Reduction System as we will present in
Section 3. It is not hard to prove that if R is a left-linear confluent TRS, then R, is again confluent.

The TRS Ry, in the last example is somewhat reminiscent to the ABC TRS in Figure 1.7 (let us call this
TRS: Rppe). In fact, every term in Ry, except jix.x corresponds to a finite or infinite term in Ropc. E.g.
px.A(B(x)) corresponds to the infinite term (AB)®, Moreover, every reduction in R}, not involving px.x
corresponds to a possibly infinite reduction in Rpge. E.g. px.A(B(x)) = px.A(x) corresponds to (AB)®
—>@ A®. In view of this correspondence it is somewhat surprising that Ry, is confluent, but Ragc is not
infinitarily confluent. The explanation is that the pi-formalism has introduced a ‘new’ object px.x, without
any meaning, but saving the confluence property (see also Figure 1.9). This object is of course the O that
we introduced above, to ‘save’ the infinitary confluence property, and, heuristically, this consideration
using Ry, has led us to the insight that only the hc terms (all put equal to O) obstruct the infinitary
confluence property ior orthogonal rewriting.

It is interesting to note that the extension of R to R, leads us to a rudimentary form of graph rewriting,
as suggested in Figure 1.9(b), where graphs are given corresponding to the displayed pi-terms. It should
also be noted however that the p-formalism is not able to express all the ‘sharing of subterms’ that one
wants in graph rewriting. To this end systems of recursion equations instead of p-expressions are more
expressible; e.g. px.A(B(x)) ‘reads’ as a system of recursion equations: {§ = A(M), 1 = B(&)) or
equivalently (£ = A(B(E))}], and px.x as {€ = E}. Here £, 1 are names of ‘locations’ (nodes). Now also a
graph with sharing as in {€ = F(m, 1), n = G(£)} (here the subterm starting with G is shared) is in our
scope, and this kind of sharing cannot be expressed by p-expressions. A start of an exploration of
properties of this kind of graph rewriting has been made in Farmer & Watro [1989].

A x

B3 x ®
Mx. Z(x) — Z(ux. Z(x)) ”
®
c / 1 \
ABABAB.;;A(B(K» n

(B)
e -
NN
(o]

orthogonal term rewriting with recursion orthogonal term graph rewriting

Figure 1.9
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2. CONDITIONAL TERM REWRITING SYSTEMS

In this section we discuss another extension of the customary rewriting format, namely with conditions.
As will be apparent from other papers in the present volume, a lot of the ongoing research in the field of
term rewriting systems is at present devoted to conditional term rewriting systems (CTRSs). Conditional
rewriting has important roots in Universal Algebra (Meinke & Tucker [1990]) and in the field of Algebraic
Specifications (Ehrig & Mahr [1985]). Moreover, Conditional Term Rewriting Systems promise to be of
value as a foundation for the integration of the disciplines of functional programming and logic program-
ming (Dershowitz & Plaisted [1985, 1987], Dershowitz & Okada [1990]). Maybe less well-known, con-
ditional rewriting has yet another origin. Out of the algebraic context, rewriting rules with conditions have
been used as a proof-theoretic tool for establishing syntactic properties of unconditional rewriting systems
and A-calculus extensions in Klop [1980], de Vrijer [1987, 1989] and Klop & de Vrijer [1989].

In the short account in this section we will do mainly two things. First we sketch the general set up and
discuss some of the fundamental definitions and results in the theory of CTRSs. Then we will describe in
somewhat more detail one particular proof-theoretic application of CTRSs, namely as a tool for proving
the property UN for non-confluent, non-leftlinear TRSs.

The general format we will use for conditional rewriting rules derives from the notation often used in logic
programming (Apt [1990]). Then a definition of conditional rewriting can be given as follows.

2.1. DEFINITION. (i) A conditional rewriting rule has the following form (with m, n 2 0):

r t=s & Py(X1, o Xm), oo Pp(X1s ooy Xm).
Here the rule ry that remains when r is stripped of its conditions,
Iyt t— s,

is supposed to be a usual (unconditional) rewriting rule, and Py(X1, ..., Xm), ..y Pp(X1, ..., Xp) are
predicates on terms.

(ii) The instances of the conditional rule r are exactly those instances t® — s© of r, that are obtained by a
substitution ¢ such that Py(o(x), ..., 6(Xm)) A ... A Pu(0(X1), -y (Xm))-

Of course, a CTRS will consist of a first order signature with a set of conditional rewriting rules, and all
common TRS notions and notations immediately generalize. Observe that if n = 0 in Definition 2.1(i), the
rewriting rule is unconditional; so the usual notion of TRS can be considered a special case of a CTRS.

2.2. EXAMPLES. (i) By way of a very simple example, observe that a non-leftlinear (unconditional) rule
can always be seen as a special kind of conditional rewrite rule that is lefi-linear. E.g. the non-leftlinear
rule r-e: Dxx — E, test for syntactic identity in applicative notation, becomes in the format of conditional
rewriting:
r-e: Dxy e < x=y.
(i) A natural rule for the transitivity of < could be the following (with T for true).
x<y—=T & x<z»T,z<y-»T.

2.3. REMARK. In a rewrite rule t — s one requires that in s no new variables appear with respect to t. The
same requirement is made for conditional rewrite rulest — s < C. But, as observed in Dershowitz,
Okada & Sivakumar [1988), for CTRSs it would make good sense to lift this requirement, as e.g. in the
following perfectly natural conditional rewrite specification of the Fibonacci numbers. This more liberal
format would introduce a considerable complication of the theory, however.
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Fib(0) — (0, 1),
Fib(x + 1) = (z, y +2) & Fibx) L (y, z).

Special types of CTRS can be obtained by stipulating some restricted type or format of predicates to be

used as conditions. But before we turn to special cases, already a quite general criterion for confluence of
CTRSs can be given.

2.4. DEFINITION. (i) LetR be a CTRS. Then R, the unconditional version of R, is the TRS which arises
from R by deleting all conditions (so each rule r is replaced by ry as in Definition 2.1(i)).
(ii) The CTRS R is called left-linear if R is so; likewise for ambiguous and orthogonal.

2.5. DEFINITION. (i) Let R be a CTRS with rewrite relation —, and let P be an n-ary predicate on the set
of terms of R. Then P is stable with respect to — if for all terms t;, t;' such that t; —» t;' (i= 1, ..., n):

P(ty, o ty) = P(1y', oo 1)

(ii) Let R be a CTRS with rewrite relation —. Then R is stable if all conditions appearing in some rule of
R are stable with respect to —.

2.6. THEOREM (O’Donnell [1977]). Let R be an orthogonal CTRS which is stable. Then R is confluent.
PROOF. A rather straightforward generalization of the confluence proof for orthogonal TRSs. 0O

Special types of CTRS: semi-equational, join and normal systems

Algebraically, conditional rewrite rules arise as implementations of equational specifications containing
positive conditional equations:

IO=S0 & 1] =81, e In = Sy

EXAMPLE. A specification of ged on natural numbers with 0 and successor S, using conditional equations:

0<0=0 S)-S(y)=x-y ged(x,y)=ged(x~-y,y) & y<x=S5(0)
0 <S(x) = S(0) 0-x=0 ged(x, y) = ged(x, y —x) <= x<y=S8(0)
S(x)<0=0 x—-0=x ged(x, x) =X

S(x)<S(y)=x<y

Then the transition from conditional equations to conditional rewrite rules can be made by just orienting
the equations in the left-hand sides. This gives rise to so-called semi-equational systems. In Bergstra &
Klop [1986], one finds also some other types of CTRSs, here listed in Definition 2.7; they are derived .
from the semi-equational ones, according to different choices that can be made in the implementation of
the equational conditions. The terminology we use is taken from Dershowitz, Okada & Sivakumar [1988];
as a matter of fact, they have a more extended classification. CTRSs that do not correspond to any of the
special categories are sometimes called generalized systems.

2.7. DEFINITION. We distinguish three special types of CTRS, with the format of the rewrite rules as
displayed. (the sign d in (ii) stands for joinability: t d's iff t—» uand s —» u for some term u.)

(1) semi-equational systems
0= 89 & t] =81, .y Ig = Sy,
(ii) join systems

to = sy & t lv Sl,...,Lnl' Sn



(iii) normal systems
tp—> 8o & t; =» Ny, —» Ny

(with ny, ..., ng ground normal forms with respect to the unconditional system R;,).

In each of these three cases the definition of — depends on conditions involving a reference to — (via =,
 or —»). The rewrite rules should be taken as constituting a positive inductive definition of —; this is all
right since the conditions are positive. In the case of generalized CTRSs one has to take care in for-
mulating conditions involving —, in order to ensure that — is well-defined (see Note 2.8).

Notice that the normal systems are a special case of the join systems, since, when s is a ground normal
form, the conditions t—» s and t sare equivalent.

2.8. NOTE. Incorporating negative conditions containing — in a generalized CTRS would disturb the inductive
definition. A simple example already illustrates the point. Consider the generalized CTRS consisting of the single
conditional rewrite rule:

a—b & azb.
Does a — b hold? If not, then yes by the conditional rule. If yes, then by which reduction rule?

For this reason the conditions of normal systems can not be put in the form t —» s: treduces tos and s is a

normal form with respect to the relation — being defined. Indeed, this type of condition would have a hidden
negative part: t does not reduce. E.g. consider the problematic single rule CTRS:

a—>b & a—»b.

Allowing conditions of the form t —» s without requiring s to be a normal form at all, is not very at-
tractive. The conditions would in general be unstable, even if the reduction relation corresponding to the
CTRS turns out to be confluent.

Obviously, the convertibility conditions t; =s; (i = 1, ..., n) in a rewrite rule of a semi-equational
CTRS are stable. So the first part of the following theorem from Bergstra & Klop [1986] is in fact a
corollary of Theorem 2.6. The second part involves an induction on the definition of —.

2.9. THEOREM. (i) Orthogonal semi-equational CTRSs are confluent.
(ii Orthogonal normal CTRSs are confluent.

2.10. EXAMPLE. Let CL-¢* be the orthogonal, semi-equational CTRS obtained by extending Combinatory Logic
with a ‘test for convertibility’:

r-e*: Dxy »E & x=y.
Then R is confluent.

Orthogonal normal CTRSs are used in the logic language K-LEAF, see Bosco e.a. [1987].
Orthogonal join CTRSs are in general not confluent. In Bergstra & Klop [1986] a counterexample is
given in the CTRS Ry in Table 2.1.

Rp: C)—» E & xlCX) R;: Cx)— E & x=C(x)
B — C(B). B — C(B)

Table 2.1

Indeed, in the diagram exhibited in Figure 2.1, we do not have C(E) { E, since this would require C(E)
—E, ie. C(E) | E again,
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ccm)
BLC®) / \caa) )
c® E
Figure 2.1

This counterexample exhibits an interesting phenomenon, or rather, makes a pitfall explicit. According
to Theorem 2.9 above, the semi-equational CTRS R; in Table 2.1 is confluent. Hence its convertibility =,
coincides with the joinability relation {, that is, x = C(x) iff x { C(x). Yet the join CTRS obtained by re-
placing the condition x = C(x) by x d C(x) is Rg again, and hence not confluent.

Modularity

Modularity results for CTRSs have been studied in recent work of Middeldorp [1989, 1990]. We list
some of his results in Theorem 2.11. Part (i) is a generalization of Toyama’s theorem (Toyama [1987],
stating that confluence is a modular property of TRSs, to CTRSs. As a matter of fact, the proof is by a
non-trivial application of Toyama’s theorem. Note that all positive results concerning CTRSs can be seen

as generalizations of the corresponding ones for unconditional TRSs, since a TRS is just a CTRS without
conditions. And of course the results on join CTRSs generalize to normal CTRSs.

2.11. THEOREM. (i) CR is both a modular property of semi-equational and of join CTRSs.
(ii) UN is a modular property of semi-equational CTRSs.
(iii) Semi-completeness is a modular property of semi-equational and of join CTRSs.

Decidability of reduction and of normal forms

Let us for the moment restrict our attention to systems with only finitely many rewrite rules. Then in the
unconditional case one-step reduction will be an easily decidable relation. This needs no longer to be so in
the case of CTRSs. E.g. consider the example of CL-e*, Combinatory Logic with test for convertibility of
Example 2.10. It is not difficult to show that CL-e* is a conservative extension of CL. So deciding
whether for pure CL terms s and t, the term Dst is a redex, amounts to deciding whether t and s are
convertible in CL. This is an undecidable problem.

From this observation it does not yet follow that being a normal form is in general undecidable. As a
matter of fact, CL-e* has a decidable set of normal forms, since, as it will turn out in the next section, this
set coincides with the normal forms of the non-leftlinear system CL-e, Combinatory Logic extended with
the rule r-e of Example 2.2 (see also Table 2.2 below). CL-e has decidable one-step reduction and also
decidable normal forms.

All the same, there do exist both semi-equational and normal orthogonal CTRSs for which the set of
normal forms is undecidable (and hence not even r.e., since the complement of the set of normal forms is
r.e). The following example from Bergstra & Klop [1986] is a normal CTRS; it can easily turned into a
semi-equational one. .

Consider again Combinatory Logic; it is well-known (cf. Barendregt [1981]) that there is a repre-
sentation 1, a ground CL-term in normal form, of each natural number n, together with a computable
coding # from the set of ground CL-terms into natural numbers, and an ‘enumerator’ E (also a ground
CL-term in normal form) such that E#(M) —» M for every ground CL-term M. Now let R be the normal
CTRS obtained by extending CL with a new constant symbol F and the rule

Fx—>1 < Ex—=0.
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This is a conservative extension, and the reduction relation — of R satisfies Fx — 1 < Ex-—» 0.
Now suppose R has decidable normal forms; then in particular the set {n | Fn — 1} is decidable, and
hence the set {n | En —» 0}. However, then also the set

3¢ = {M a ground CL-term | M -» 0}

is decidable; for, given M we can compute #(M) and decide whether EG#(M)) —» O or not. (By confluence
for R it follows from E#M)) —» 0 and E#M) —» M that M —» 0.) But then we have a contradiction; from
the theorem of Scott stating that any non-empty proper subset of the set of ground CL-terms which is
closed under convertibility in CL, must be undecidable it follows that X is undecidable.

Proof theoretic applications of CTRSs

We now turn to a proof-theoretic application of CTRSs in the field of term rewriting itself. We describe a
general method for proving the unique normal forms property (UN) for certain, non-confluent, non-left-
linear TRSs. It proceeds by proving confluence for an associated left-linear CTRS, that originates from
the original non-leftlinear TRS by—what might be called—linearizing’ the rules. This type of use of a
linearized CTRS has originally been proposed by the second author and was applied in Klop [1980] and
in Klop & de Vrijer [1989]. In these papers the method has been put to use in different situations, but in a
rather ad hoc manner. A systematic presentation can be found in de Vrijer [1990], to which we refer for
further details.

We will explain two new applications of the method of conditional linearization, taken from de Vrijer
[1990]. First, it yields very easily that all TRSs that are non-ambiguous after linearization have unique
normal forms (Theorem 2.16). A second new application is the case of Combinatory Logic plus Parallel
Conditional. These two results can also be obtained via a theorem stated in Chew [1981], establishing UN
for a somewhat wider class of non-leftlinear TRSs. However, the proof of Chew’s theorem is very com-
plicated and our new proofs are much simpler.

Let us first mention three specific non-leftlinear extensions of Combinatory Logic to which the method
can be applied: CL-sp, CL-e and CL-pc. The usual rewrite rules of CL are: Sxyz — xz(yz), Kxy — x, Ix
—> x. Two interesting ways of extending Combinatory Logic are with Surjective Pairing (CL-sp) and with
Parallel Conditional (CL-pc); see Table 2.2.

CL-sp CL-pc CL-e
CL + CL+ CL +
D1(Dxy) — x -t CTxy - x r-e: Dxx = x
Dy(Dxy) >y r-f: CFxy -y
D(D1x)(Dax) = x r-pc: Czxx = x
Table 2.2

CL-sp was the first non-leftlinear term rewriting system to be extensively studied, mostly in the related
lambda calculus version (see e.g. Mann [1973], Barendregt [1974], Klop [1980]). In de Vrijer [1987,
1989] a linearized CTRS was used to prove that the surjective pairing rules are conservative. The system
CL-e came up in the study of CL-sp for theoretical purposes.

Each of the three non-leftlinear rewriting systems of Table 2.2 lacks the Church-Rosser property (Klop
{1980]). But nevertheless, each one can be shown to have unique normal forms, by the method of condi-
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tional linearization. Only the existing proof for the case of CL-sp is very complicated (see Klop & de
Vrijer [1989]); the other cases are much simpler and will be covered here.

As a starting point consider the following simple observation concerning Abstract Reduction Systems
(ARSs); recall that an ARS is just any set with a binary relation —, considered as a reduction relation.

2.12. PROPOSITION. Let Ry and Ry be two ARSs with the same set of objects, and with reduction
relations —q, —1 and convertibility relations =g, =; respectively. Let NF; be the set of normal forms of
R;i(i=0,1). Then Ry is UN if each of the following conditions hold:

(@) —n extends —;

(i) RyisCR;
(iii) NF; contains NF.
PROOF. Easy. O

The interest of Proposition 2.12 derives from its use in the method proving UN. E.g., in order to be able
to use this proposition for establishing UN for CL-¢, we ‘break’ the non-leftlinearity constraint in the rule
r-e by replacing it with a conditional rule r-e* (the resulting system is CL-e* of Example 2.10).

r-e*: Dxy - E < x=y.
Then it turns out that Proposition 2.12 can be applied with respect to CL-e and CL-¢*.

Note that the rule r-e* can be seen as resulting from r-e, written in the conditional format of Example
2.2(i), by just relaxing the condition x =y to x = y. More in general, we have the following definition.

2.13. DEFINITION. (i) Ifris a rewrite rule t — s, we say thatr' =t' — s'is a left-linear version of r if
there is a substitution 6: VAR — VAR such that r'® = r and r' is left-linear.

(i) Ifr=t— sisarewriterule, andr' =t — s'is a left-linear version of r, such that r = r'0, then the
conditionalized left-linear version or linearization of r (associated to r') is the conditional rewrite rule:

tos & Alg=xli>},x°=x%x,x€ t}.

(In case r is already left-linear, it will coincide with its left-linear version r' and with the associated conditional rule.)

EXAMPLE. Czxy —» y is a left-linear version of the non-leftlinear rule Czxx — x, by the substitution &
with 6(z) = 2, 6(x) = x, 6(y) = x. The associated conditional rule is Czxy — y ¢= x =y. The only other
left-linear version of Czxx — x is Czxy — X, with associated conditional rule Czxy — x <= x =Y.

2.14. DEFINITION. (Linearization) (i) If R is a TRS, then a linearization of R is a semi-equational CTRS
that consists of linearizations of the rules of R, for each rule of R at least one.

(ii) IfR is a TRS, then RL, the full linearization of R, is defined as the linearization of R that is obtained
by including for each rule r € R all its conditionalized left-linear versions.

EXAMPLE. The system CL-e* is the result of linearizing the system CL-e. In fact, CL-e* = CL-eL.

2.15. THEOREM. If a linearization of a term rewriting system R is confluent, then R is UN.

PROOF. We want to apply Proposition 3.1 with Rg =R and R; a confluent linearization R’ of R; so we
must check the clauses (i), (ii) and (iii) of 3.1 for R and R".

(i) —pg extends —p since a linear rule is always a restriction of each of its linearizations.

(ii) R'is Church-Rosser holds by assumption.
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As to (iii), we prove by induction on X the implication X € NFR = X € NFp. Assume X € NFg.
Then X can only be not an R'-normal form, if it contains a redex Y that is an instance of a linearization r*
of some non-leftlinear rule r = t = s of R. That is, X = C[Y] and for a left-linear versionr' =t' — §' of r
(such that r = r'0 ), we have Y = t'7; moreover the conditions of r* must be satisfied, amounting to the
implication x;0 = x;% = x;*=x;, for all x;, xj € t'. Since the x;V's are proper subterms of X, and hence
R-normal forms, they are by the induction hypothesis also R'-normal forms. Hence, since R' has unique
normal forms: x;® =x;° = x;=x;". But then Y would be also an R-redex, contradicting the assump-
tionthat X e NFr. O

Theorem 2.15 yields a general method to prove UN for non-leftlinear TRSs: try to prove CR for one of its
linearizations. Whether the method will work in a particular case, and how difficult it is, depends on the
CR problem that ensues.

We first show a quite general result, that is an immediate consequence of Theorem 2.15, Call 2 TRS
strongly non-ambiguous if after replacing each non-leftlinear reduction rule by a left-linear version the re-
sulting TRS is non-ambiguous.

2.16. THEOREM. Any strongly non-ambiguous TRS has unique normal forms.

PROOF. Let R be a strongly non-ambiguous TRS. Consider a linearization R' of R consisting of exactly
one conditionalized left-linear version for each rule of R. Then R’ will be an orthogonal semi-equational
CTRS. Hence the result follows by Theorems 2.15 and 2.9(i). n]

EXAMPLES. A non-leftlinear TRS to which Theorem 2.16 can be applied is the system CL-e. A non-am-
biguous but not strongly non-ambiguous TRS that does not have unique normal forms is (Huet [1980]):
R: F(x, x) = A, F(x, G(x)) = B, C — G(O).

R is non-ambiguous; there are no critical pairs since x and G(x) cannot be unified. However, R is not
strongly non-ambiguous, since {F(x, y) = A, F(x, G(y) — B} has a critical pair. The term F(C, C) has
the two distinct normal forms A and B.

Unicity of normal forms for Combinatory Logic plus Parallel Conditional

Finally, we sketch how one can prove confluence for the full linearization CL-pcl of the ambiguous and
non-leftlinear system CL-pc (Table 2.2). The rules of the full linearization CL-pcl are summed up in
Table 2.3.

CL-pck CL-pcl-
CL+ CL+
-t CTxy = x -t CTxy = x
r-f: CFxy -y r-f: CFxy -y
r-pcl: Czxy—>x & x=y r-pcl= Czxy =X ¢ X=cLpc¥s Z#CLpc F
r-pc2 Czxy oy & x=y r-pc Czxy =y <= X=CLpc¥» Z=CL-pc F
Table 2.3

Solving the CR problem for CL-pcl may at first look not very promising, because of the vicious cases of
overlap between the pairs of rules r-t / r-pc2, r-f /r-pc! and r-pc! / r-pc2. Now the idea is to add extra con-
ditions in order to remove these overlaps. This will involve the use of negative conditions, however, and
therefore, in order to avoid the difficulty indicated in Note 2.8, we have in the system CL-pcl~ ‘fixed’ the



43

conditions, making them refer to =cy_p, convertibility in CL-pc. In this way, the conditions in CL-pcl—
have a determinate meaning, independent of the inductive definition of conversion (=cypcL-) they are part
of. What we get is not a semi-equational, but a generalized CTRS, called CL-pcL-.

It is now crucial that all this fiddling with the original reduction relation of CL-pc, did not change con-
version. That s, the conversion relation relations of CL-pcl and CL-pcl— both coincide with =¢y_pc.
Moreover, in order to prove CR for CL-pcl— we need to know that T #CL-pc s this will guarantee that
there is indeed no overlap in CL-pcl— between the rules r-t and r-pc?-, etc. A model construction within
the Graph Model Pw for CL can be used for this purpose.

2.17. PROPOSITION. (i) The system CL-pcl—is Church-Rosser.
(ii) The system CL-pcl is Church-Rosser.

PROOF. (i) Since =cr.pcL- = =CL.pc» the conditions of CL-pcl- are stable. Moreover, between the rules
of CL-pcl~ there are no harmful cases of overlap, due to the negative condition and since T #CL-pc F-
Then proving CR is a routine matter (compare Theorem 2.6).

(ii) Assume't =CL-pcL & Then t =CL-pcL-§- Hence by (i), the terms t and s must have a common reduct
in CL-pcL~. But now since =CL-pcL = =CL-pe» OBViOUSly —>¢p pel- & —>CL-pel: in CL-pcL reduction is
more liberal than in CL-pcl~, two conditions have been lifted. So t and s have the same common reduct in
CL-pcL. o

2.18. COROLLARY. The system CL-pc has unique normal forms.

3. TERM REWRITING WITH BOUND VARIABLES

We will now introduce TRSs with as additional feature: bound variables. The well-known paradigm is, of
course, A-calculus. We want to exhibit a framework for term rewriting incorporating apart from the usual
TRSs, also specimens like A-calculus, various typed A-calculi and extended A~calculi, for instance combi-
nations of some typed A-calculus with an ordinary TRS. Recently, there has been quite some attention for
such combinations. (See e.g. Breazu-Tannen [1988].)

For the sake of abbreviation, we will refer to TRSs (possibly) with bound variables as Combinatory
Reduction Systems or CRSs for short. TRSs will form a subclass of the class of CRSs. CRSs were
introduced in Klop [1980], where a study is made of especially orthogonal CRSs. We start with consider-
ing several examples.

3.1. EXAMPLES.

(i) A-calculus. The only rewrite rule is the B-reduction rule:

AX.Z1(X))Zy = Zy(Zy),

presented in an informal notation; the formal notation would use a substitution operator [ := ] and we
would write (Ax.M)N — [x := N]M. Still, this informal notation has a direct appeal, and in the sequel we
will make it formal; this is essential for the syntax definition of CRSs.

(ii) Polyadic A-calculus. Here we have n-ary A-abstraction and reduction rules (B,) for every n 2 1:

B  Ox1Xg...Xp. Zo(X1, X2, es Xg))Z1Z5... 2y = Zo(Zys Zo,seeey Zy).

(iii) p-calculus. This is the well-known notation system designed to deal with recursively defined
objects (processes, program statements, ...) with as basic rewrite or reduction rule:

HX.Z(x) = Z(ux.Z(x))
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We have used it in Section 1, to extend an ordinary TRS R with recursion, resulting in Ry,.
(iv) Some rewrite rules in Proof Theory.

PLZo)(Ax.Zy (x)Ay-Zo(y)) = Z1(Zg)
PRZy)(Ax.Z;(x))(Ay.Zo(y)) = Zp(Zp)

The operational meaning of this pair of rewrite rules should be self-explaining: according to whether Zg is
prefixed by L or R it is substituted in the left or the right part of the ‘body’ of the redex headed by P, for
all the free occurrences of x respectively y. The rules occur as normalization procedures for proofs in
Natural Deduction (Prawitz [1971], p. 252), albeit not in the present linear notation. (For more explana-
tion see Klop [1980].)

(v) A-calculus with 8-rules of Church. This is an extension of A-calculus with a constant 3 and a
possibly infinite set of rules of the form

5M1...Mn - N

where the M; (i =1, ..., n) and N are closed terms and the M; are moreover in “B8-normal form”, i.e.
contain no P-redex and no subterm as in the left-hand side of a d-rule. To ensure non-ambiguity (defined
below) there should moreover not be two left-hand sides of different &-rules of the form M ...M,, and
8M;...Mp, m 2 n. (So every left-hand side of a 3-rule is a normal form with respect to the other 8-rules.)

The preceding examples suggest that a general definition of what we will call Combinatory Reduction
Systems (CRSs) may be profitable, in order to be able to derive properties like confluence at once for a
whole class of such CRSs, rather than repeating similar proofs or using ‘proof by hand-waving’. The
account below follows Klop [1980]. The concept of a CRS was first suggested in Aczel [1978], where a
confluence proof for a subclass of the orthogonal CRSs was given.

Term formation in a Combinatory Reduction System.

3.2. DEFINITION. The alphabet of a CRS consists of

(i) aset Var= {x,!n 20} of variables (also written as x, y, z, ...);

(i) aset Mvar of metavariables {Z;X | k, n 2 0); here k is the arity of Z,X;

(iii) aset of constants {Q;!i e 1} for some I; constants will be written also as P, Q, A, l,... ;
(iv) improper symbols () and [ ].

The arities k of the metavariables Z ¥ can always be read off from the term in which they occur—hence
we will often suppress these superscripts. E.g. in (Ax.Zg(x))Z; the Z is unary and Z, is O-ary.

Usually, TRSs are presented as functional TRSs (where all operators have a fixed arity); then we can
consider applicative TRSs as a subclass (where the only non-constant operator is a binary operator
‘application’; the paradigm example is CL, Combinatory Logic). The reverse way is also possible, once
the notion of substructure is available (as will be the case later on); then functional TRSs can be seen as
restricted versions (substructures) of the corresponding applicative TRSs where operators are ‘varyadic’,
i.e. permit any number of arguments. So, the set-ups via the functional and the applicative ‘format’ are

entirely equivalent. Below we will use the applicative format. For a syntax definition of CRSs in the
functional format, see Kennaway [1988].
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3.3. DEFINITION. The set Mter of meta-terms of a CRS with alphabet as in 3.2 is defined inductively as
follows:

(i) constants and variables are meta-terms;

(ii) iftis a meta-term, x a variable, then ([x]t) is a meta-term, obtained by abstraction;

(iii) if t, s are meta-terms, then (ts) is a meta-term, obtained by application, provided t is not an
abstraction meta-term ([x]t);

(iv) ifty, ..., tg (k >0) are meta-terms, then Z X(t,, ..., t;) is a meta-term (in particular the Z,0 are
meta-terms).

Note that meta-variables Z,k+! are not meta-terms; they need arguments. Meta-terms in which no

metavariable Z occurs, are terms. Ter is the set of terms.

3.4. NOTATION. (i) As in applicative TRSs such as CL, the convention of association to the left is adopt-
ed. The outermost pair of brackets is dropped.
(ii) An iterated abstraction meta-term [x1](...([xp-11([xp]t))...) is written as [X1, ..., Xp]t or [x]t for x =
X1, ..., Xn. A meta-term Q([x]t) will be written as Qx.t.
(iii) We will not be precise about the usual problems with renaming of variables, a-conversion etc. That
is, this is treated like in A-calculus when one is not concerned with implementations. Thus we will adopt
the following conventions:
- All occurrences of abstractors [x;] in a meta-term are different; e.g. Axx.t is not legitimate, nor is
Ax.(tAx.t).
- Furthermore, terms differing only by a renaming of bound variables are considered syntactically
equal. (The notion of ‘bound’ is as in A-calculus: in [x]t the free occurrences of x in t (hence by (i)
all occurrences) are bound by the abstractor [x].)

3.5. DEFINITION. A (meta-)term is closed if every variable occurrence is bound.

Rewriting in a Combinatory Reduction System.

3.6. DEFINITION. A rewrite (or reduction) rule in a CRS is a pair (t, s), written ast — s, where t, s are

meta-terms such that:

(i) thas aconstant as ‘head’ (i.e. leftmost) symbol;

(i) t,sare closed meta-terms;

(iii) the metavariables Z ¥ that occur in s, also occur in t;

(iv) the metavariables Z k in t occur only in the form Z X(xy, ..., x,) where the x; (i = 1, ..., k) are
variables (no meta-terms). Moreover, the x; are pairwise distinct.

If, moreover, no metavariable an occurs twice or more in t, the rewrite rule t — s is called left-linear.

In order to generate actual rewrite steps from the rewrite rules, we have to define substitution:
3.7. DEFINITION. (i) A valuation g: Mvar — Var* x Ter is a map such that

Q(an) = (Xl, e Xk)(,
i.e. o assigns to a k-ary metavariable Z ¥ a term t together with a list of k pairwise different variables x,,
..y Xg. It is not required that the x; actually occur in t.
Furthermore we define:
((Xl, . Xk)t)(tl, ooy tk) = l[X13= Ty e Xgi= Ik]

where [X1:= 1, ..., Xj:= t;] denotes simultaneous substitution of t; for x; (i = 1, ..., k).
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(i) A substitution & corresponding to the valuation g is a map from Mter to Ter as follows:

o(x) = x for x e Var, 6(Q) = Q for constants Q;
o([x]t) = [x] o(t);

o(ts) = (o(t) o(s))

S(Z (1t -y ) = B(ZK) (0(27), ... O(1)).

(So if G(ZK) = (X1, vy XL, then S(ZyK(1y, ..., t) = t{xy:=0(ty), -0y Xi=0(t)].)

3.8. EXAMPLE. (i) Let 6(Z;!) = (u) uy. Then g(Z;!(x)) = xy.
@) Leto(Zy!) = (u)zy. Then o(Z; 1(x)) =zy.
@) Let 6(Z2) = (x,y) xyxz, 6(Z!) = () xzy, 5(Z0) = u. Then

G(Z2(Z2(20, 20), Z1(ZD))) = nuuz(xuy)(uuuz)z.

As in ordinary term rewriting, if r =t — s is a rewrite rule, then o(t) is an r-redex, and r-reduction (or
r-rewrite) steps have the form C[o(t)] — C[o(s)] for some context C[ ], with the proviso that g(Z) = (x1,
«.» Xp)p for some p if Z(xy, ..., X;) occurs in t. (The definition of ‘context’ is left to the reader.)

3.9. EXAMPLE. In this example we write tC instead of o(t). We reconstruct a step according to the B-
reduction rule of A-calculus

(Ax. Z(x)Z' - Z(Z).

Let the valuation ZZ = (x) yxx, Z'C = ab be given. Then we have the reduction step

(Ox. Z(x)Z)°®

= (Ax. Z(x)%)Z'e

= (Ax. Z2 (x9))Z<

= (Ax.((x)yxx)(x))(ab)

= (Ax. yxx)(ab) —
VAV

=79 (Z9)

= ((x)(yxx))(ab)

= y(ab)(ab).

3.10. DEFINITION. The notion of “non-ambiguity” for a CRS containing rewrite rules {r; =t; — s; li € I}

is as for ordinary TRSs:

(i) Letthe left-hand side t; of rj be in fact tj(Z(xy), ..., Zy(Xp)) where all metavariables in t; are
displayed. Now if the rj-redex o(t;(Z1(X1), ..., Z;(Xm)) contains an rj-redex (i # j), then this rj-redex

must be already contained in one of the g(Zp(xp)).

(ii) Likewise if the ri-redex properly contains an r;-redex.

Also as usual, a CRS is orthogonal if it is left-linear and non-ambiguous.

A large part of the theory for orthogonal TRSs carries over to orthogonal CRSs (see Klop [1980]).
The main fact is:
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3.11. THEOREM. All orthogonal CRSs are confluent. O

Hence normal forms are unique in orthogonal CRSs. Also Church’s Theorem for Al-calculus generalizes
to orthogonal CRSs. Church’s Theorem states that for a term in Al-calculus the properties WN (Weak
Normalization) and SN (Strong Normalization) coincide. (A term is WN if it has a normal form, and SN
if all its reductions are terminating.) The same is true for orthogonal TRSs which are non-erasing; this
means that in every reduction rule t — s both sides t, s contain the same variables. Here the definition of
‘non-erasing’ reduction rule for CRSs generalizes from that for TRSs as follows: A rule t — s is non-
erasing if all metavariables Z occurring in t, have an occurrence in s which is not in the scope of a
metavariable (i.e. not occurring in an argument of a metavariable). Without this proviso, which for TRSs
is vacuously fulfilled since there all metavariables in the rewrite rules are 0-ary, also rules like the B-re-
duction rule of A-calculus (Ax.Z(x))Z' — Z(Z') would be non-erasing, which obviously is not the inten-
tion.

REMARK. It would be interesting to investigate which CRSs can be ‘defined’ (or ‘interpreted’, or ‘imple-
mented’) in A-calculus. First, a good notion of ‘interpretation’, of which there seem to be many variants,
should be developed—for some proposals concerning TRSs see O’Donnell [1985].

Note that even for orthogonal CRSs which are in a very direct sense definable in A-calculus (e.g. CL,
Combinatory Logic, is ‘directly definable’ in A-calculus in an obvious way), theorems like the Church-
Rosser theorem (3.11) are not superfluous: if a reduction system R, can be interpreted in a “finer” reduc-
tion system Ry, the confluence of R need not imply the confluence of Ry.

Substructures of Combinatory Reduction Systems.

Above, all CRSs had an unrestricted term formation by some inductive clauses. However, often one will
be interested in CRSs where some restrictions on term formation are present. A typical example is Al-cal-
culus, mentioned above, where the restriction is that in a subterm Ax. t there must be at least one occur-
rence of x in t.

Other typical examples of restricted term formation arise when fypes are introduced, as in typed A-cal-
culus (AT-calculus) or typed Combinatory Logic (CLT) (see Hindley & Seldin [1986]). In a simple way a
type restriction occurs already when one considers many-sorted TRSs. This leads us to the following
definition:

3.12. DEFINITION.

(i) Let (R, —pR) be a CRS as defined above. Let T be a subset of Ter(R), which is closed under —p.
Then (T, —g!T), where -7 is the restriction of —y to T, is a substructure of (R, —gIT).

(i) If (R, —p)is orthogonal, so are its substructures.

We now declare that also a substructure of a CRS is a CRS. It is not hard to see (by a patient inspec-
tion of the proofs of the theorems mentioned above) that almost everything carries over to our new notion
of CRS: for orthogonal CRSs we have confluence, the Parallel Moves Lemma (mentioned in Section 1),
Finite Developments (see Klop [1980]), Church’s Theorem for non-erasing CRSs, etc. The ‘almost’
refers to cases where expansions (i.e. inverse reductions M « « ...) are considered (since we did not
require that substructures are closed under expansion). In Klop [1991] several more examples of well-
known orthogonal CRSs can be found, such as polymorphic A-calculus and PCF (Plotkin [1977]).
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